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Abstract. The field of Optical Music Recognition (OMR) is currently
hindered by the scarcity of real annotated data, particularly when deal-
ing with handwritten historical musical scores. In similar fields, such as
Handwritten Text Recognition, it was proven that synthetic examples
produced with image generation techniques could help to train better-
performing recognition architectures. This study explores the generation
of realistic, handwritten-looking scores by implementing a music symbol-
level Generative Adversarial Network (GAN) and assembling its output
into a full score using the Smashcima engraving software. We have sys-
tematically evaluated the visual fidelity of these generated samples, con-
cluding that the generated symbols exhibit a high degree of realism,
marking significant progress in synthetic score generation.

Keywords: Generative Adversarial Networks · Handwritten Musical
Symbols · Content Conditioning · Musical Score Generation

1 Introduction

Optical Music Recognition (OMR) is formally defined as the task of computa-
tionally reading music notation in documents [4], whether printed or handwrit-
ten. From a research point of view, one of the main goals of OMR is constructing
faithful computer-processable representations of these music scores, which would
enable their study by scholars and their conservation by archivists. Having com-
puters perform this task is interesting because manual transcription of musical
documents is a painstaking, costly process that requires many hours, even for
relatively simple scores and seasoned musicologists.

The complexity of this task highly increases when addressing historical hand-
written scores, particularly those written in CWMN (Common Western Music
Notation) from the 18th century onward. Thousands of these musical scores, are
scattered throughout the world, only a small percentage of which has been tran-
scribed. This scarcity of data added to the presence of artifacts due to the aging
of the paper plummet the performance of OMR models. Multiple authors [4,25]
have stated that the scarcity of annotated handwritten musical data is one of
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the biggest bottlenecks to the improvement of the field. Many have resorted to
using printed musical data as a workaround, which can provide an improvement
in model performance [1]. However, it remains inferior to the value offered by
real handwritten data. Therefore, the generation of synthetic handwritten data
seems a viable option to explore.

For this reason, the aim of this work is to design an effective and robust gen-
erative architecture that can generate synthetic handwritten scores to increase
the training set for OMR systems, and thus, improve their overall performance.
Concretely, we propose to generate isolated symbols using Generative Adversar-
ial Networks (GAN) [9], and use the Smashcima engraving software [18] to create
full music sheets. From the extensive evaluation, we observe that the resulting
music scores are realistic, paving the way to the use of generated music data for
training OMR systems.

As for the structure followed in this work, after outlining the research con-
text and motivations, we review prior work in OMR, handwriting generation and
music symbol synthesis. The methodology section presents our adapted Gener-
ative Adversarial Network (GAN) architecture, followed by a description of the
dataset composition and preprocessing techniques. The experimental setup is
then detailed, including hyperparameter selection and training strategies. Fi-
nally, evaluation is conducted through qualitative visual assessments and quan-
titative metrics such as Fréchet Inception Distance, Kernel Inception Distance,
and Handwriting Distance.

2 Previous Work

Early OMR systems relied on classical computer vision techniques to extract
simple symbol primitives from images [8, 21, 23]. While these methods gave ac-
ceptable results for closed domains, the use of deep learning models significantly
improved recognition accuracy and generalization on many sub-tasks [4]. Un-
fortunately, implementing large-scale learning algorithms is complicated in the
field of OMR because of the requirement of large amounts of annotated data,
which are not quite there yet [4,25]. Consequently, it has become necessary to ex-
plore alternative strategies to obtain samples to train models on, including data
augmentation, synthetic dataset generation, and transfer learning from printed
data.

Despite the fact that data augmentation [23] can mitigate overfitting, it is
inherently limited to producing variations within the original feature space, be-
ing unable to generate entirely new samples. The creation and popularization
of generative deep learning models surpassed this limitation, as it enables to
generate realistic samples and not as resembling of the input image. Among
the predominant generative models developed during the past decade, including
Generative Adversarial Networks (GANs) [9], Diffusion Models (DFs) [13], Vari-
ational Autoencoders (VAEs) [16], and Transformers [3, 19], GAN architectures
have been among the most popular in the field of Handwritten Text Recognition
(HTR). Indeed, HTR is a much more developed field than OMR, especially in the
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generation of synthetic data. Numerous studies [7, 14, 15, 26, 27] have leveraged
Generative Adversarial Networks (GANs) for synthesizing handwritten words,
benefiting from the extensive availability of training data—far exceeding the
datasets available for handwritten OMR. In this context, the work of Kang et
al. [15] was among the first to apply a GAN architecture in the field of HTR,
yet it managed to generate highly realistic handwritten text, and thus showing
a promising research direction for related domains, such as handwritten music
symbols.

However, very few of the above mentioned techniques have been explored in
the context of Optical Music Recognition. VAEs [16] and Adversarial Autoen-
coders (AAEs) [17] have been tested in [11] showing acceptable results. Also
in the field of OMR, Shatri et al. [22] and Tirupati et al. [24] propose the use
of GANs for line-level music scores. In both works, the generated images dis-
play notable realism, however, there is still room for improvement, especially
in the generation of small and detailed symbols, such as accidentals and rests.
Finally, it is worth to mention that there are other types of contributions to the
field of data generation that do not necessarily involve deep learning models.
The Smashcima software [18], created by Mayer and Pecina, consists of an ar-
chitecture that takes existing individual music symbols and engraves them into
realistic music sheets. However, it does not generate new music symbols, which
means that, in terms of handwriting style variability, it is limited to the styles
of the existing set of music symbols.

In this work, and inspired by the above findings, we propose to combine
the benefits of GANs and the Smashcima software to generate more realistic
and varied music scores. Concretely, we propose a content-conditioned GAN
architecture to generate music symbols to be fed into the Smashcima software.
Thus, we can generate music scores without limitations regarding contents and
handwriting styles while avoiding the need of well-aligned datasets for training –
we can rely on symbol-level annotations from widespread datasets instead, which
are easier to obtain, and generate smaller and more controlled classes, which is
computationally more efficient.

3 Methodology

3.1 Preliminaries

The architecture of a basic GAN [9] comprises two main networks: The Genera-
tor G(z;θg) and the Discriminator D(x;θd), which are differentiable functions
parameterized by some learnable weights θ[·]. The Generator produces an image
conditioned by some noise vector z, while the Discriminator computes the prob-
ability that an image x is a real sample or is produced by the Generator. These
two networks’ parameters are optimized jointly by minimizing the discriminator
loss

Ld = log(1−D(G(z))). (1)
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Essentially, training follows an adversarial process: the Discriminator minimizes
its classification error, while the Generator maximizes it, aiming to generate
images indistinguishable from real ones.

This min-max optimization has its benefits, as it fosters continuous improve-
ment in both networks while not relying on a pixel-level loss function. Never-
theless, it also has its drawbacks, the most prominent being, that balancing the
simultaneous learning of both architectures can be difficult – if one network
significantly outperforms the other, the adversarial dynamic collapses. This sce-
nario may occur if the Discriminator quickly reaches near-perfect accuracy, which
can lead to vanishing gradients for the Generator. Alternatively, if the Gener-
ator produces non-realistic samples while the Discriminator has not learned to
distinguish them correctly, the Discriminator’s loss quickly saturates and stops
providing useful feedback.

3.2 Baseline Model

We base our work on the GANWriting model by Kang et al. [15]. This model
expands on the basic premise of a GAN, adapting it to the idiosyncrasy and
requirements of handwriting generation. The primary distinction from a conven-
tional GAN is the ability to condition the output to adapt to a specific writing
style. Rather than using a random vector as input, the Generator receives an
encoded representation of a set of images from the same author, forcing the GAN
to learn their specific calligraphic style. The secondary main distinction is that
the model can be conditioned to generate images with a specific textual content.
Additionally, additive noise is applied to the feature space representing the calli-
graphic style before concatenating the two content encoding vectors, forcing the
appearance of alterations on the output.

To support this finer-grained generation process, the model employs three
distinct loss functions to guide the training process. The first one is the Discrim-
inator Loss from standard GANs. The second one is the Word Recognizer Loss,
which is computed by passing the generated image through a word recognition
model, encouraging the Generator to produce images that accurately contain
the word specified in the input string. Lastly, the Writer Classifier Loss incen-
tivizes the Generator to generate images that exhibit a stylistic resemblance to
the handwriting of the specified author from the input set of images.

3.3 Adaptation to Music Symbol Generation

Our architecture, as can be observed in Fig. 1, replicates the content condition-
ing in [15] with some necessary changes. Given that writer identification data is
not available for all of the datasets in use, we restrict the style input to a single
image. Furthermore, the content conditioning sequence is replaced by a single
one-hot encoded vector, given that individual symbols are generated on every
run instead of full words. These changes imply the modification of the loss func-
tion of the model w.r.t. the baseline implementation and thus the modification
of specific components of the model.
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Fig. 1. Architecture of the proposed handwritten musical symbol generation model.
The input to the generator is a style example and the symbol class encoded as a one-hot
encoded vector. The architecture is trained combining a standard GAN discriminator
loss and a symbol classification loss, each produced by two sub-networks.

We employ the same Discriminator network proposed in [15]. This architec-
ture consists of an initial convolutional layer, followed by six residual blocks with
Leaky ReLU activations and Average Pooling. A final binary classification layer
is used to distinguish between real and generated images. The standard GAN
Discriminator loss Ld is computed from this module.

For the content loss, the text recognition network is replaced by a CNN-
based symbol classifier C(x;θc), which consists of three convolutional layers
with batch normalization. Each of these blocks is in turn followed by ReLU
activation and max pooling to progressively downsample the spatial dimensions
while increasing feature depth. The extracted feature maps are flattened and fed
into a final classification layer that outputs predictions over our vocabulary of
musical symbols. Denoting the final predicted distribution over the output class
vocabulary V as C(x) = ŷ and the ground truth distribution as y, the final
Classification loss Lc is formally defined as

Lc = KL(ŷ, y) =
∑
∀v∈V

y(v) · log y(v)

ŷ(v)
. (2)

A sweep was performed to test if the above specified Kullback–Leibler di-
vergence loss was the right choice compared to the usual cross-entropy loss, for
which the former gave slightly better results.

Given that there is no writer identification ground truth in all of the training
datasets, the writer identification loss is not used for this model. The final loss
function for the full model is thus

LModel = αLd + βLc, (3)

where both α and β are hyperparameters that allow weighting the importance
of each of the sub-modules.
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4 Datasets

The data used for training the GAN consists of images of real handwritten
musical symbols, which have been extracted from multiple sources:
MUSCIMA++ [10]:. A collection of 140 page-level modern handwritten score
samples with pixel-level symbol annotations. It contains examples of most classes.
Fornes Dataset [8]:. A symbol-level dataset containing 2128 examples of clefs
and 1970 examples of accidentals. Originally intended for classification.
Homus [5]:. A broad “online” (as opposed to rasterized; containing stroke in-
formation) symbol database containing 15400 samples authored by 100 different
musicians. It contains examples of most classes.
Capitan Collection [6]:. A collection of symbols extracted by tracing real
mensural scores. Some of the classes are compatible with CWMN.

The combination of these datasets is not straightforward, given that their
symbol definitions are not directly compatible. A pre-processing step is per-
formed to address inconsistencies in naming conventions for objects pertaining
to the same class (e.g. Eight-Rest from Homus or Rest8th from MUSCIMA++
to a generic eightrest class) and to address granularity differences between
the classes of the datasets (e.g. converting objects in the halfNote class into
halfNoteUp and halfNoteDown).

Due to the scarcity of samples and high imbalance found in the initial class
distribution, data augmentation techniques are applied on the training sym-
bol dataset. New images are created by rotating dataset samples by ±10 or
mirror flipping them in those cases where semantic integrity is preserved, thus
re-balancing some of the underrepresented classes. A threshold of 3,000 images
per class is set to ensure an adequate amount of training data for reliable model
performance, resulting in a final collection of 49 classes.

Additional line-level samples are required in order to evaluate the full genera-
tion pipeline – generation of symbols and engraving. The MUSCIMA++ dataset
is used as gold standard, since it is the only one of the sourced datasets that
contains full-line images as well as symbol annotations. This ensures that com-
parison is performed against samples that are reasonably in-distribution.

5 Experimental Setup

5.1 Hyperparameter Tuning

The learning rates for the discriminator, generator, and recognizer are set to
1e-5, 1e-4, and 1e-5, respectively, based on optimal performance observed dur-
ing a hyperparameter sweep. We employ a batch size of 16, chosen to balance
computational efficiency with stable gradient updates.

To regulate training dynamics, we apply different weighting factors to the
loss components. The discriminator loss is weighted at α = 1.0, while the rec-
ognizer loss is assigned a weight of β = 2.5 to emphasize accurate classification
of generated symbols. Additionally, a noise penalty term with a weight of 3.0
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is introduced to encourage diversity in the generated samples, mitigating mode
collapse.

5.2 Additional Modifications

Applying the described GAN architecture to handwritten data produces already
acceptable synthetic symbols, as shown in Fig. 2.a. Nevertheless, certain gener-
ated examples, as illustrated in Fig. 2.b, display some issues that require further
refinement.

(a)

beam sixteenth measure halfnote

beam sixteenth barline halfnote

(b)

sharp quarternote sharp quarternote

sharp quarternote sharp quarternote

Fig. 2. (a) An example of an average generation. (b) An example of a faulty generation.
Top row: Input symbols | Bottom row: Generated symbols.

The primary challenge is the GAN’s difficulty to generate handwritten-looking
images for the more complex symbols, concretely the accidentalSharp and
gClef classes. As it can be observed in Fig. 2.b, results often do not resem-
ble the input symbol. Our current hypothesis suggests that this issue is caused
by the extreme variability in the handwritten representations of these symbols,
which may hinder the model’s ability to learn a consistent mapping.

To address this issue, two potential solutions are explored. The first solution
involves implementing symbol-specific training steps. After 150 standard steps
– that is, where each batch contains randomly selected symbols – the GAN
undergoes 50 steps where the batch consists exclusively of the symbols that
prove more challenging to generate, allowing for a more focused training on
them.

The second solution involves the symbol classifier and its corresponding loss.
The issue arises from the fact that the symbol classifier correctly labels disorted
symbols because they resemble the real symbol class more closely than the other
classes. Consequently, the loss does not reflect the presence of distortions, pre-
venting the GAN from learning to correct them. Our hypothesis suggests that the



8 G. Asbert et al.

classifier needs to be more stringent, as a result, several pictures of the distorted
symbols were assigned to new “bad” classes (in this case, accidentalSharpBad
and gClefBad). This adjustment causes the classifier loss to be affected when
a deformed symbol is generated, as these images are now classified under the
"bad" classes rather than their correct counterparts.

A second issue is evident in Fig. 2.b, where, despite significant variation in
the input images of the quarter notes, the generated synthetic images exhibit
a high degree of similarity. This behavior suggests that the GAN is excessively
dependent on the input text label, leading to nearly equivalent outputs for each
instance of a given class while neglecting the style reference image. To address
this, we introduce a random swap of a subset of the input labels within a batch.
This strategy reduces the GAN’s reliance on the input label, as it may occasion-
ally be inaccurate, and encourages the model to focus more on the input image.
As a result, this modification enhances the variability of generated instances
within the same symbol class.

As the GAN continues its training process, determining the best time to
freeze its weights and save the synthetic symbols to put them into musical staves
is required. A first approach to automate this process consists on comparing
the encoded feature vectors of the input and generated images using Euclidean
Distance and Cosine Similarity. However, using this decision criterion alone, the
generated images do not conform to desired quality standards. To solve this, the
Structural Similarity Index Metric (SSIM) is additionally incorporated, which
considers structural information, luminance, and contrast to better align with
human visual perception. The combination of these metrics allows saving models
that generate higher-quality images.

5.3 Line-level Generation

Once the synthetic music symbol images are generated, they need to be placed
onto music sheets for testing purposes. This task is accomplished using the
Smashcima software [18], which operates as follows: first, the user provides a
MusicXML file, which describes the semantics of the music sheet to engrave.
Smashcima then collects musical symbol samples from the MUSCIMA++ dataset,
as well as their masks, bounding boxes and other positional parameters. The
software then places the symbols on the score according to the MusicXML file,
resizing and merging them accordingly. For this work, the Smashcima is modified
to take the symbol-level images generated by our system rather than the data
from MUSCIMA++.

5.4 Considered Metrics

For the evaluation of the synthetic musical lines containing our symbols, we
utilize the methodology proposed by Pippi et al. [20], which provides a tool for
comparing two image datasets—music sheets at the line level in our case—by
computing multiple metrics in their latent spaces. The following metrics are
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selected to quantitatively assess the realism of the generated data. Note that in
all of these metrics, the lower the value the better.
Fréchet Inception Distance (FID) [12]. It measures the similarity between
two datasets by extracting feature embeddings from a pretrained InceptionV3
model and computing the Fréchet distance between their distributions, assuming
a Gaussian form.
Kernel Inception Distance (KID) [2]. Extracts feature embeddings using In-
ceptionV3, like FID, but measures similarity with Maximum Mean Discrepancy
(MMD) using a polynomial kernel. Unlike FID, KID does not assume a Gaus-
sian distribution, making it more robust to different data distributions within
the data.
Handwriting Distance (HWD) [20]. A metric for Handwritten Text Gener-
ation (HTG) that uses a deep network to extract handwriting style features and
compute perceptual distance between styles.

To evaluate these metrics, we conducted a comparative analysis of our syn-
thetic lines against multiple reference datasets. Specifically, we compared them
to lines generated using the base Smashcima software with Muscima++ symbols,
real historical lines, and printed lines, all benchmarked against the Muscima++
dataset.

Fig. 3. Mix of real and synthetic symbols. Check footnote 3 to know which ones are
generated.

6 Evaluation

In this section, we evaluate our GAN-generated symbols and staves, both qual-
itatively and quantitatively.

6.1 Qualitative Results

For the qualitative analysis, we first evaluate the individual handwritten symbols,
followed by an assessment of the lines engraved using these synthetic symbols.
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As illustrated in Fig. 2.a, the majority of the generated symbols are realistic,
recognizable, and visually appealing. To further demonstrate this, a mix of real
and synthetic symbols is shown in Fig. 3. The generated symbols are revealed
in the footnote 3.

However, certain symbols remain challenging for the GAN to reproduce ac-
curately, particularly the accidentalSharp and gClef classes. Nevertheless, as
shown in Fig. 4, while not of perfect quality, the generated instances start to
ressemble more the real symbols.

Regarding the staves generated using our synthetic symbols, some examples
are shown in Fig. 5. Overall,the backgrounds utilized by Smashcima effectively
replicate various types of aged paper, while the connection between primitives
is well-executed.

Fig. 4. On the left, reference images of an accidentalSharp and a gClef from the
input dataset. On the right, faulty images generated by the GAN of each respective
class.

Some comparison can be drawn between our approach and that of Tirupati
et al. [24], since both methods employ GANs in different ways for music score
generation. One of the key strengths of their work is its ability to closely replicate
the musical structure from the input images. However, this also introduces a
limitation, as the generated scores closely adhere to the style of the original
input music sheet, restricting stylistic variability and the model’s freedom to
generate interesting handwriting artifacts. We believe that an ideal synthetic
music score generation system should allow for the creation of any music sheet,
in the style of any specific composer while maintaining a high degree of realism.
Our proposed method, which first generates the primitives and then arranges
them on the page, has the advantage of letting us control the musical structure
without being limited by the input data.

3 Images generated by the GAN: top-left, top-right, bottom-right.
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Fig. 5. Musical sheets made with the symbols generated by the GAN, then cut into a
measure and cropped vertically.

6.2 Quantitative Results

Following a visual assessment of the generated musical lines, their accuracy was
quantitatively evaluated by comparing them to real lines extracted from the
MUSCIMA++ dataset. In addition to our proposed dataset – referred to as
GAN Smashcima – several other line-level datasets were included for comparison.
These comprise Base Smashcima, which contains lines generated using the orig-
inal Smashcima software based on MUSCIMA++ symbol masks; Real, which
includes authentic historical manuscript lines; and Printed, consisting of type-
set musical lines derived from printed scores. All datasets were binarized prior
to comparison to ensure that evaluations focused exclusively on the stroke and
structural form of the symbols, rather than on background similarity.

FID ↓ KID ↓ HWD ↓

Printed 118.96 0.114 2.194

Real 136.82 0.117 2.32

Base Smashcima 132.38 0.128 3.052

GAN Smashcima 142.48 0.150 2.85

MUSCIMA++ (Self) 0.033 -1.06 0.0

Table 1. Fréchet Inception Distance (FID), Kernel Inception Distance (KID), and
Handwriting Distance (HWD) between various datasets and the MUSCIMA++ dataset
as reference, which consists of real handwritten lines.
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Table 1 reveals that the dataset most similar to MUSCIMA++ across all
metrics is the printed dataset. According to the FID metric, Base Smashcima
follows, which is consistent given that its symbols originate from MUSCIMA++.
The real dataset ranks next, as expected, since it consists of human-written
symbols. Finally, the dataset generated in this work achieves an FID score close
to the real dataset, which indicates that the global structure of our images closely
resembles MUSCIMA++.

The KID metric, also in Table 1, exhibits a similar ranking, with the only
difference being that real lines outperform those from Base Smashcima. This
may be attributed to the greater stability of the KID metric with respect to
the number of samples, given that the number of lines generated for this test is
approximately in the thousands.

For the HWD metric, illustrated in the last chart in Table 1, the printed and
real datasets again yield the best results. Notably, our generated symbols score
higher in handwriting similarity than Base Smashcima, despite the latter being
derived from MUSCIMA++. This suggests that, in the absence of real data, our
synthetic symbols may serve as a viable alternative for augmenting datasets.

To better contextualize the significance of the differences observed in the
evaluation metrics, we established a baseline by comparing the Muscima++
dataset against itself. As expected, the HWD metric yielded a score of 0.0,
indicating perfect similarity. The FID metric produced a low score of 0.033,
while the KID metric resulted in a slightly negative value of -1.06. Although the
KID metric is theoretically non-negative—as it estimates a squared distance—it
is an unbiased estimator and can exhibit slight negative values in practice due
to variance introduced by finite sample sizes.

7 Conclusions

This work has proposed a GAN architecture for generating synthetic handwrit-
ten musical symbols. We have demonstrated that, even in a field characterized by
limited and complex structured data, a GAN-based model can produce promising
results, offering a new avenue for providing training data for OMR. Furthermore,
we have explored the integration of the Smashcima software for engraving syn-
thetic symbols, which proved effective in generating realistic music scores while
allowing precise control over the desired musical content.

Our pipeline opens several possibilities for future research. First, by lever-
aging our GAN-generated symbols, researchers can explore other techniques for
arranging them into realistic sheets. Second, different generative architectures
could be tested, such as Diffusion Models or Transformers, which have not been
explored in the field of OMR yet, and then integrated into our existing pipeline,
and using the final processing stage to structure the generated symbols into
coherent musical notation.

Despite the promising results, opportunities for further improvement remain.
The generation of some symbols (i.e. clef and accidental sharp) is challenging
due to their inherent complexity and the high handwriting style variability. This
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could be addressed by making the GAN learn the handwritten style of a specific
author, whenever data of distinct writers may be available. Another limitation
is the lack of symbol classes that the Smashcima software accepts and includes
in the generated scores. If the number of classes accepted were to be increased,
more complex music sheets could be generated, and therefore, be able to get
closer to the feature representation of the real data.

Addressing these challenges could bring us closer to high-quality synthetic
handwritten notation. As generative models and domain adaptation advance,
synthetic data is likely to play a crucial role in bridging the gap between hand-
written and machine-readable notation.
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